skip to main content


Search for: All records

Creators/Authors contains: "Borch, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Free, publicly-accessible full text available July 11, 2024
  3. Produced water (PW) is the largest waste stream associated with oil and gas (O&G) operations and contains petroleum hydrocarbons, heavy metals, salts, naturally occurring radioactive materials and any remaining chemical additives. In some areas in Wyoming, constructed wetlands (CWs) are used to polish PW downstream of National Pollutant Discharge Elimination System (NPDES) PW release points. In recent years, there has been increased interest in finding lower cost options, such as CWs, for PW treatment. The goal of this study was to understand the efficacy of removal and environmental fate of O&G organic chemical additives in CW systems used to treat PW released for agricultural beneficial reuse. To achieve this goal, we analyzed water and sediment samples for organic O&G chemical additives and conducted 16S rRNA gene sequencing for microbial community characterization on three such systems in Wyoming, USA. Three surfactants (polyethylene glycols, polypropylene glycols, and nonylphenol ethoxylates) and one biocide (alkyldimethylammonium chloride) were detected in all three PW discharges and >94% removal of all species from PW was achieved after treatment in two CWs in series. These O&G extraction additives were detected in all sediment samples collected downstream of PW discharges. Chemical and microbial analyses indicated that sorption and biodegradation were the main attenuation mechanisms for these species. Additionally, all three discharges showed a trend of increasingly diverse, but similar, microbial communities with greater distance from NPDES PW discharge points. Results of this study can be used to inform design and management of constructed wetlands for produced water treatment. 
    more » « less
  4. Oil and gas (O&G) extraction generates large volumes of produced water (PW) in regions that are often water-stressed. In Wyoming, generators are permitted under the National Pollutant Discharge Elimination System (NPDES) program to discharge O&G PW for beneficial use. In one Wyoming study region, downstream of the NPDES facilities exist naturally occurring wetlands referred to herein as produced water retention ponds (PWRPs). Previously, it was found that dissolved radium (Ra) and organic contaminants are removed within 30 km of the discharges and higher-resolution sampling was required to understand contaminant attenuation mechanisms. In this study, we sampled three NPDES discharge facilities, five PWRPs, and a reference background wetland not impacted by O&G PW disposal. Water samples, grab sediments, sediment cores and vegetation were collected. No inorganic PW constituents were abated through the PWRP series but Ra was shown to accumulate within PWRP grab sediments, upwards of 2721 Bq kg −1 , compared to downstream sites. Ra mineral association with depth in the sediment profile is likely controlled by the S cycle under varying microbial communities and redox conditions. Under anoxic conditions, common in wetlands, Ra was available as an exchangeable ion, similar to Ca, Ba and Sr, and S was mostly water-soluble. 226 Ra concentration ratios in vegetation samples, normalizing vegetation Ra to sediment Ra, indicated that ratios were highest in sediments containing less exchangeable 226 Ra. Sequential leaching data paired with redox potentials suggest that oxic conditions are necessary to contain Ra in recalcitrant sediment minerals and prevent mobility and bioavailability. 
    more » « less
  5. Abstract

    Reductive dissolution during permafrost thaw releases iron-bound organic carbon to porewaters, rendering previously stable carbon vulnerable to microbial decomposition and subsequent release to the atmosphere. How mineral iron stability and the microbial processes influencing mineral dissolution vary during transitional permafrost thaw are poorly understood, yet have important implications for carbon cycling and emissions. Here we determine the reactive mineral iron and associated organic carbon content of core extracts and porewaters along thaw gradients in a permafrost peatland in Abisko, Sweden. We find that iron mineral dissolution by fermentative and dissimilatory iron(III) reduction releases aqueous Fe2+and aliphatic organic compounds along collapsing palsa hillslopes. Microbial community analysis and carbon emission measurements indicate that this release is accompanied by an increase in hydrogenotrophic methanogen abundance and methane emissions at the collapsing front. Our findings suggest that dissolution of reactive iron minerals contributes to carbon dioxide and methane production and emission, even before complete permafrost thaw.

     
    more » « less